Satellite Remote Sensing

       In the 1960s, a revolution in remote sensing technology began with the deployment of space satellites. From their high vantage-point, satellites have a greatly extended view of the Earth's surface. The first meteorological satellite, TIROS-1 (Figure 3), was launched by the United States using an Atlas rocket on April 1, 1960. This early weather satellite used vidicon cameras to scan wide areas of the Earth's surface. Early satellite remote sensors did not use conventional film to produce their images. Instead, the sensors digitally capture the images using a device similar to a television camera. Once captured, this data is then transmitted electronically to receiving stations found on the Earth's surface. The image below (Figure 4) is from TIROS-7 of a mid-latitude cyclone off the coast of New Zealand. 
      Today, the GOES (Geostationary Operational Environmental Satellite) system of satellites provides most of the remotely sensed weather information for North America. To cover the complete continent and adjacent oceans two satellites are employed in a geostationary orbit. The western half of North America and the eastern Pacific Ocean is monitored by GOES-10, which is directly above the equator and 135° West longitude. The eastern half of North America and the western Atlantic are cover by GOES-8. The GOES-8 satellite is located overhead of the equator and 75° West longitude. Advanced sensors aboard the GOES satellite produce a continuous data stream so images can be viewed at any instance. The imaging sensor produces visible and infrared images of the Earth's terrestrial surface and oceans (Figure 5). Infrared images can depict weather conditions even during the night. Another sensor aboard the satellite can determine vertical temperature profiles, vertical moisture profiles, total precipitable water, and atmospheric stability.
Figure 3: TIROS-1 satellite. (Source: NASA - Remote Sensing Tutorial)



      Figure 4: TIROS-7 image of a mid-latitude cyclone off the coast of New Zealand,
                       August 24,    1964. (Source: NASA - Looking at Earth From Space)


      Figure 5: Color image from GOES-8 of Hurricanes Madeline and Lester off the coast of Mexico, October 17, 1998. (Source: NASA - Looking at Earth From Space)




       Figure 6:The Landsat 7 enhanced Thematic Mapper instrument. (Source: Landsat 7 Home Page)
    
    
     In the 1970s, the second revolution in remote sensing technology began with the deployment of the Landsat satellites. Since 1972, several generations of Landsat satellites with their Multispectral Scanners (MSS) have been providing continuous coverage of the Earth for almost 30 years. Currently, Landsat satellites orbit the Earth's surface at an altitude of approximately 700 kilometers. Spatial resolution of objects on the ground surface is 79 x 56 meters. Complete coverage of the globe requires 233 orbits and occurs every 16 days. The Multispectral Scanner records a zone of the Earth's surface that is 185 kilometers wide in four wavelength bands: band 4 at 0.5 to 0.6 micrometers; band 5 at 0.6 to 0.7 micrometers; band 6 at 0.7 to 0.8 micrometers; and band 7 at 0.8 to 1.1 micrometers. Bands 4 and 5 receive the green and red wavelengths in the visible light range of the electromagnetic spectrum. The last two bands image near-infrared wavelengths. A second sensing system was added to Landsat satellites launched after 1982. This imaging system, known as the Thematic Mapper, records seven wavelength bands from the visible to far-infrared portions of the electromagnetic spectrum (Figure 6). In addition, the ground resolution of this sensor was enhanced to 30 x 20 meters. This modification allows for greatly improved clarity of imaged objects.

 Figure 7: SPOT false-color image of the southern portion of Manhatten Island and part of Long Island, New York. The bridges on the image are (left to right): Brooklyn Bridge, ManhattanBridge, and the Williamsburg Bridge. (Source: SPOT Image)

     
     SPOT (Satellite Pour l'Observation de la Terre) satellite program has launched five satellites since 1986. Since 1986, SPOT satellites have produced more than 10 million images. SPOT satellites use two different sensing systems to image the planet. One sensing system produces black and white panchromatic images from the visible band (0.51 to 0.73 micrometers) with a ground resolution of 10 x 10 meters. The other sensing device is multispectral, capturing green, red, and reflected infrared bands at 20 x 20 meters (Figure 7). SPOT-5, which was launched in 2002, is much improved from the first four versions of SPOT satellites. SPOT-5 has a maximum ground resolution of 2.5 x 2.5 meters in both panchromatic mode and multispectral operation.
     Radarsat-1 was launched by the Canadian Space Agency in November, 1995. As a remote sensing device, Radarsat is quite different from the Landsat and SPOT satellites. Radarsat is an active remote sensing system that transmits and receives microwave radiation. Landsat and SPOT sensors passively measure reflected radiation at wavelengths roughly equivalent to those detected by our eyes. Radarsat's microwave energy penetrates clouds, rain, dust, or haze and produces images regardless of the sun's illumination allowing it to image in darkness. Radarsat images have a resolution between 8 to 100 meters. This sensor has found important applications in crop monitoring, defense surveillance, disaster monitoring, geologic resource mapping, sea-ice mapping and monitoring, oil slick detection, and digital elevation modeling (Figure 8).

          Figure 8: Radarsat image acquired on March 21, 1996, over Bathurst Island in Nunavut, Canada. This image shows Radarsat's ability to distinguish different types of bedrock. The light shades on this image (C) represent areas of limestone, while the darker regions (B) are composed of sedimentary siltstone. The very dark area marked A is Bracebridge Inlet which joins the Arctic Ocean. (Source: Canadian Centre for Remote Sensing)

    
    

    

ไม่มีความคิดเห็น:

แสดงความคิดเห็น